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Abstract—In this letter, a joint antenna activation and power
allocation (JAAPA) scheme is proposed for the downlink energy
efficiency (EE) optimization in cell-free massive multiple-input
multiple-output (MIMO) systems. Different from the traditional
optimization approaches that only focus on power allocation,
the proposed JAAPA scheme introduces the activated antenna
number into the consideration of EE optimization, thus leading
to a further improvement of EE. Specifically, the JAAPA scheme
is formulated as a non-convex fractional optimization problem. In
order to solve it in an efficient approach, we adopt the monotone
accelerated proximal gradient (APG) algorithm to obtain a sub-
optimal solution. Finally, simulation results validate that the
proposed JAAPA scheme achieves a better trade-off between
EE performance and computational complexity compared to the
existing resource allocation schemes.

Index Terms—Energy efficiency, accelerated proximal gradi-
ent, antenna activation, power allocation, joint optimization.

I. INTRODUCTION

NOWADAYS, energy efficiency (EE) has emerged as an im-
portant performance metric in cell-free massive MIMO

systems [1]. As a fundamental method to optimize EE, power
allocation not only manages the near-far effect but also bal-
ances the trade-off between spectral efficiency (SE) and power
consumption [2]–[7]. In general, optimizing EE through power
allocation usually establishes a non-convex optimization prob-
lem so that an efficient solution is highly desired in practice
[2]. Specifically, the sequential convex approximation (SCA) is
employed to transform the non-convex problem into a series of
standard convex problems, which can be iteratively addressed
by general solvers, i.e. CVX and YALMIP [3]–[6]. Meanwhile,
the accelerated proximal gradient (APG) algorithm is widely
applied by taking advantages of the first-order information,
which significantly reduces the computational complexity with
comparable performance to SCA methods [7]–[9].

However, previous works of EE joint optimization in cell-
free systems only focus on the power allocation and access
point (AP) selection, where the impact of the number of acti-
vated antennas on EE has not been throughly investigated yet
[2], [3], [5]–[7]. In fact, as more antennas are deployed at APs
to improve SE, more power consumption is also incurred with
the growth of activated antennas, which may deteriorate EE at
the same time [10], [11]. To this end, the number of activated
antennas actually plays an important role in EE optimization,

Bin Yan, Zheng Wang and Yongming Huang are with School of Information
Science and Engineering, Southeast University, Nanjing 210096, China (e-
mails: bin yan@seu.edu.cn; wznuaa@gmail.com). Jiayi Zhang is with the
School of Electronic and Information Engineering, Beijing Jiaotong Univer-
sity, Beijing 100044, China (e-mail: jiayizhang@bjtu.edu.cn).

which should be taken into account. More specifically, such
a joint optimization problem have been studied in distributed
massive MIMO and multi-user MIMO systems, revealing that
the detrimental effect of excessive antenna activation on EE is
prevalent across different scenarios [4], [11].

In this letter, besides power allocation, the impact of an-
tenna activation is also considered in the EE optimization
problem. Specifically, the EE expression is extended under
the fractional-exponent normalized conjugate beamforming
(FENCB) precoding framework and therefore a joint antenna
activation and power allocation (JAAPA) scheme is proposed
to achieve reasonable resource allocation. Furthermore, the
characteristics of SE and power consumption regarding to the
number of activated antennas are explored, and a condition for
adopting the minimum level of antenna activation is derived.
Finally, necessary problem transformations are implemented to
convert the joint non-convex optimization problem established
by JAAPA into an accessible form, where the APG algorithm
is used to efficiently obtain a sub-optimal solution.

II. SYSTEM MODEL

Consider a canonical cell-free massive MIMO downlink
system with M multi-antenna APs serving K single-antenna
users simultaneously, while each AP has n activated antennas.
Specifically, the propagation channel between the k-th user
and the m-th AP is given by gmk =

√
βmkhmk ∈ Cn, where

βmk represents the large-scale fading coefficient (LSFC) , and
hmk ∈ Cn is the small-scale fading vector. All APs are con-
nected to the central processing unit (CPU) via backhaul links,
and the system operates in time division duplex (TDD) mode.
During the uplink training phase, all K users simultaneously
transmit pilot sequences to the APs. Let τc and τu be the length
of the coherence interval and the number of symbols used for
uplink training, respectively.

Under the minimum mean square error (MMSE) criterion,
the estimated channel vector ĝmk is distributed according to
CN (0n, γmkIn), and the mean-square is denoted by [3]

γmk
∆
=

ρuτuβ
2
mk

1 + ρuτu
∑K

j=1 βmj |ψH
k ψj |2

, (1)

Note that ρu represents the normalized uplink transmit signal-
to-noise ratio (SNR), ψk ∈ Cτu denotes the pilot sequence
transmitted by the k-th user.

During the downlink data transmission phase, local dis-
tributed precoding is widely used to reduce backhaul overhead
and enhance system scalability [2]. Up to now, low-complexity
EE optimization scheme has only been restricted within CB
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precoding [7], remaining the possibility of further enhancing
performance through more advanced precoding methods [6],
[10]. To explore the potential of other CB variants precoding
methods, the distributed FENCB precoding framework is
considered [12]

wmk =
ĝ∗
mk

∥ĝmk∥α+1
, (2)

as a general solution, where α = −1, 0, 1 corresponds to
CB, NCB, and ECB respectively [3], [6], [7], [10]. In fact,
α represents the channel inversion rate and could be any real
value. Accordingly, when adopting the FENCB scheme, the
non-negative power allocation coefficients η ∈ RM×K must
satisfy the per-AP transmit power constraint [12]

PAP,m(η) = ρd
Γ(n− α)

Γ(n)

K∑
k=1

ηmk

γα
mk

≤ ρd, ∀m, (3)

where ρd represents the maximum downlink normalized trans-
mit power, Γ(·) is the Gamma function and n > α. Based on
the use and then forget principle [12], the effective signal-to-
interference-plus-noise ratio (SINR) of k-th user is given as

SINRk(η) = ρd

(
M∑

m=1

√
ηmkamkk

)2{
1+

ρd

K∑
j=1

M∑
m=1

ηmjbmkj + ρd

K∑
j ̸=k

(
M∑

m=1

√
ηmjamkj

)2}−1

,

(4)

with 

amkj =
Γ(n− α−1

2 )

Γ(n)

γ
1/2
mk

γ
α/2
mj

|ψH
k ψj |,

bmkj =
Γ(n−α)

Γ(n)
(n−α−1)

γmk

γα
mj

|ψH
k ψj |2

−a2mkj+
Γ(n−α)

Γ(n)

βmk

γα
mj

.

The proportion of downlink data transmission within the
entire coherence interval is defined as τd = 1 − τu

τc
, then the

achievable downlink SE of the k-th user can be obtained by
Shannon’s theorem, i.e.,

SEk(η) = τd log2 (1 + SINRk(η)) . (5)

Based on (5), the global EE (bit/Joule) is defined as the ratio
of total throughput to system power consumption in cell-free
massive MIMO [3]

EE(η) =
B
∑K

k=1 SEk(η)

Ptotal(η)
, (6)

where B represents the system bandwidth. Note that the above
expression for EE is solely a function of the power coefficients,
regardless of the activated antenna numbers.

Given EE(η) in (6), the traditional EE optimization is
achieved by executing power allocation scheme, which is
mathematically represented as [3], [5]–[7]

P1 : max
η

EE(η) (7a)

s.t. SEk(η) ≥ SEth,∀k, (7b)
{(3); ηmk ≥ 0,∀m,∀k}. (7c)

Here, in constraint (7b), SEth serves as a minimum SE
threshold, ensuring that all users can communicate reliably.
Constraint (7c) represents the power limitation conditions.
However, this scheme only focuses on power allocation opti-
mization with all the available antennas being activated, which
probably turns out to be inefficient for EE optimization.

III. JOINT OPTIMIZATION SCHEME AND ENERGY
EFFICIENCY ANALYSIS

To achieve simultaneous optimization of power and acti-
vated antennas, we first need to rewrite the SINR expression
(4) as (8) by expanding the independent variable from only
(θ) to (θ, n). Specifically, the variable substitution θmk =√
ηmkγ

−α
mk is performed for mathematical tractability, which

is inspired by equation (3). Principly, this substitution confines
the Lipschitz gradient of the SINR function within a suitable
magnitude, preventing slow or infeasible convergence of first-
order algorithms due to extreme gradient constants. Further-
more, this variable substitution is a generalization of [7] and
[9], applicable to the transformation of any utility function
within the FENCB precoding framework. The same variable
substitution and expansion can also be applied to the power
consumption function, where the details are omitted here.

Overall, the EE expression can be extended to optimize
both power allocation and the number of activated antennas
simultaneously, leading to the proposed JAAPA scheme1

P2 : max
θ∈C1,n∈C2

EE(θ, n) ∆
= B

SE(θ, n)
P (θ, n)

, (11a)

s.t. SEk(θ, n) ≥ SEth,∀k, (11b)

1Note that in (11a), the denominator’s power consumption is different from
Ptotal(η) in (6), as it ignores the traffic-dependent power. This equivalent
treatment aims to simplify the optimization of the objective function. Due to
space limitations, please refer to [3, Appendix B] for the detailed procedure.

SINRk(θ, n) =
ρdΓ

2
n

(∑M
m=1 θmk

√
γmk

)2
1 + ρd

∑K
j=1

∑M
m=1 θ

2
mj (Φmkj +Ψmk) + ρd

∑K
j ̸=k

(∑M
m=1 θmjΩmkj

)2 (8)

with Γn
∆
=

Γ(n− α−1
2 )

Γ(n)
, Γ̃n

∆
=

Γ(n− α)

Γ(n)
, Γn

∆
= n− α− 1, (9)

and Φmkj
∆
= (Γ̃nΓn − Γ2

n)γmk|ψH
k ψj |2, Ψmk

∆
= Γ̃nβmk, Ωmkj

∆
= Γn

√
γmk|ψH

k ψj |. (10)
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with

C1
∆
={θ|Γ̃n

K∑
k=1

θ2mk ≤ 1,∀m;θ ∈ RM×K≥ 0}, (12a)

C2
∆
={n|max(⌊α⌋+1, 1)≤n≤Nmax;n∈Z+}, (12b)

SE(θ, n)∆=
K∑

k=1

SEk(θ, n) =

K∑
k=1

τd log2 [1+SINRk (θ, n)] ,

(12c)

P (θ, n)
∆
=ρdN0

M∑
m=1

Γ̃n

αm

(
K∑

k=1

θ2mk

)
+

M∑
m=1

(nPtc,m+P0,m).

(12d)

Compared to P1, the optimization problem P2 introduces
an additional constraint on the activated antenna number n.
Typically, ⌊α⌋ represents the floor function of α, (12b) restricts
n meets practical requirements, which is greater than the
channel inversion rate and less than the maximum number of
available antennas. Notably, each AP is assumed to have the
same number of activated antennas for simplicity. In equation
(12d), where N0 denotes the noise power, 0 < αm ≤ 1 is
the power amplifier efficiency, Ptc,m is the internal power to
run the circuit components, and P0 is the traffic-independent
power consumption [3].

Theorem 1. When adopting the FENCB precoding framework,
if the following condition is satisfied

M∑
m=1

Ptc,m ≥ 2Kτd
ln 2

, (13)

then the optimal number of activated antennas for P2 is

n⋆ = max(⌊α⌋+ 1, 1). (14)

Proof. We elucidate this theorem by analyzing the growth rate
for SE and system power consumption as n increases. Firstly,
consider the following upper bound for SE(θ, n)

SE(θ, n) =
K∑

k=1

τd log2 [1 + SINRk (θ, n)]

<

K∑
k=1

τd log2

1 + Γ2
n

(∑M
m=1 θmk

√
γmk

)2
Γ̃n

∑K
j=1

∑M
m=1 θ

2
mjβmk


=

K∑
k=1

τd log2

[
Γ2
nS1k(θ) + Γ̃nS2k(θ)

Γ̃nS2k(θ)

]
∆
= SE(θ, n), (15)

where S1k(θ) =
(∑M

m=1 θmk
√
γmk

)2
and S2k(θ) =∑K

j=1

∑M
m=1 θ

2
mjβmk. Specifically, the upper bound SE(θ, n)

is derived by neglecting certain interference terms in SE(θ, n).
As the impact of pilot contamination decreases, the approxi-
mation between the upper bound and the original value will
improve. The partial derivative of the upper bound with respect
to n can be expressed as

∂SE(θ, n)
∂n

=
τd
ln 2

K∑
k=1

[
∂Γ2

n

∂n S1k(θ) +
∂Γ̃n

∂n S2k(θ)

Γ2
nS1k(θ) + Γ̃NS2k(θ)

− ∂Γ̃n

∂n

1

Γ̃n

]

(a)
=

τd
ln 2

K∑
k=1

[
2Γ2

n(Υ (n− α−1
2 )− Υ (n))S1k(θ)

Γ2
nS1k(θ) + Γ̃nS2k(θ)

]

+
τd
ln 2

K∑
k=1

[
Γ̃n(Υ (n− α)− Υ (n))S2k(θ)

Γ2
nS1k(θ) + Γ̃nS2k(θ)

− ∂Γ̃n

∂n

1

Γ̃n

]
(b)
<

τd
ln 2

K∑
k=1

[
2Γ2

n(Υ (n− α−1
2 )− Υ (n))S1k(θ)

Γ2
nS1k(θ) + Γ̃nS2k(θ)

]

+
τd
ln 2

K∑
k=1

[
2Γ̃n(Υ (n− α−1

2 )− Υ (n))S2k(θ)

Γ2
nS1k(θ) + Γ̃nS2k(θ)

− ∂Γ̃n

∂n

1

Γ̃n

]

=
Kτd
ln 2

[
2Υ (n− α− 1

2
)− Υ (n)− Υ (n− α)

]
(c)
≈ Kτd

ln 2
ln

(
1 +

1

n− α
+

(α− 1)2

4n(n− α)

)
+

Kτd
ln 2

2n+ α2 − α

2n(n− α)(2n− α+ 1))
<

2Kτd
ln 2

. (16)

Here, equation (a) is derived by taking the derivative of the
Gamma function ∂Γ(n)

∂n = Υ (n)Γ(n), where Υ (n) represents
the digamma function [13]. Using the inequality Υ (n− α) ≤
Υ (n − α−1

2 ), the upper bound (b) holds when α ≥ −1.
In practical scenarios, α is typically set to -1, 0, or 1, thus
making this upper bound applicable. Equation (c) is derived
by approximating Υ (n) ≈ ln(n)− 1

2n [13].
From equation (16), the upper bound of ∂SE(θ,n)

∂n is always
greater than 0 and asymptotically approaches 0 as n increases.
Specifically, the upper bound of SE increases with n, but
its growth rate is primarily dictated by the logarithmic term
ln(1 + 1

n−α ), resulting in a slower increment as n increases.
Moreover, its fastest growth rate does not exceed 2Kτd

ln 2 , which
is solely determined by the system parameters. On the other
hand, from equation (12d), we can see that even if the AP
transmit power is ignored, the system power consumption still
increases linearly with n, and the lower bound growth rate
depends on the circuit internal power

∑M
m=1 Ptc,m.

Overall, the power consumption increases linearly, while the
SE growth rate shows a logarithmic decay trend. As n reaches
a certain upper bound, the power consumption will dominate,
and the excessive antenna activation would deteriorate EE,
indicating the existence of the optimal number of activated
antennas n⋆. Furthermore, if

∑M
m=1 Ptc,m ≥ 2Kτd

ln 2 , the SE
growth rate is lower than the power consumption even with the
minimum number of activated antennas. Therefore, antenna
activation should be carried out at the minimum level, it means
n ought to be the lower bound of the feasible set C2, i.e.,

n⋆ = max(⌊α⌋+ 1, 1),

completing the proof.

IV. PROBLEM REFORMULATION AND APG ALGORITHM

In this section, we will employ the monotone APG al-
gorithm to efficiently solve the joint non-convex fractional
optimization problem P2 formulated by the JAAPA scheme.

Theoretically, the classic APG algorithm is designed to cope
with the unconstrained optimization problems [8]. In order to
transform the original problem P2 into an amenable form for



4

Algorithm 1 The JAAPA scheme with APG execution

Input: θ(0), Nmax, ξ = 0.1, ϵ > 0, ζ = 10, 0 < αy, αθ < 1
Lf

.

Output: Stationary point θ
⋆

1: Initialization: θ(1) = z(1) = θ
(0)

2: repeat
3: Set: i = 1, t(0) = t(1) = 1
4: repeat
5: Update y(i) via (18)
6: Update z(i) and v(i) via (19) and (20) respectively
7: Update θ

(i)
via (21)

8: t(i+1) =

√
4(t(i))2+1+1

2 , i = i+ 1

9: until |Fξ(θ
(i)

)−Fξ(θ
(i−1)

)

Fξ(θ
(i)

)
| ≤ ϵ

10: Updata the strating point for the next iteration:
θ
(0)

= θ
(1)

= z(1) = θ
(i)

11: Increase the penalty coefficient ξ = ξ × ζ

12: until |Q(θ
(i)

)−Q(θ
(i−1)

)

Q(θ
(i)

)
| ≤ ϵ

13: return θ⋆ = θ
(i)

APG execution, the exterior penalty method is considered to
handle the SE constraints, resulting in the following problem

P3 : max
θ∈C1,n∈C2

Fξ(θ, n)
∆
= EE(θ, n)− ξQ(θ, n). (17)

Specifically, Q(θ, n) =
∑K

k=1 [max (0,SEth − SEk (θ, n))]
2

is the quadratic loss function corresponding to the constraint
(11b). This loss imposes a penalty to force the solution move
towards the feasible region as the constraint is not satisfied.
ξ > 0 is the penalty coefficient, controling the magnitude of
the penalty and increases progressively during the iterations.

To facilitate APG execution, we concatenate θ and n into
a vector, denoted as θ = [θT1 ,θ

T
2 , . . . ,θ

T
K , n]T ∈ RMK+1.

Let i represents the iteration index, APG uses momentum
acceleration to compute the extrapolation point

y(i)=θ
(i)
+
t(i−1)

t(i)
(z(i)−θ(i))+ t(i−1)−1

t(i)
(θ

(i)−θ(i−1)
), (18)

here, t(i) is the extrapolation parameter and computed recur-
sively. From (18), the extrapolation point undergoes gradient
ascent within a given step size αy to maximize the objective
function. Meanwhile, the proximal operation is performed to
ensure that the obtained point fall within the feasible set, i.e.,

z(i+1) = proxC

(
y(i) + αy∇Fξ(y

(i))
)

= arg min
θ
(i+1)∈C

∥θ(i+1) −
(
y(i) + αy∇Fξ(y

(i))
)
∥2,

(19)

where C is the Cartesian product of C1 and C2, and αy can
be set through backtracking line method to find the largest
possible value [9]. The solution of (19) requires gradient and
proximal projection calculations, which are similar to [7], and
is omitted here for simplicity.

On the other hand, the point y(i) may be a bad extrapolation,
causing the solution to be trapped near saddle point [8].

Therefore, APG also employs the same operation as (19) to
set up an additional monitor to correct unfavorable point

v(i+1) = proxC

(
θ
(i)

+ αθ∇Fξ(θ
(i)
)
)
. (20)

Then, by comparing the accelerated point z(i+1) and unaccel-
erated point v(i+1), the point with a larger objective function
value is selected as the next iteration point

θ
(i+1)

=

{
z(i+1), if Fξ(z

(i+1)) ≥ Fξ(v
(i+1)),

v(i+1), otherwise.
(21)

Repeat the above update process until the objective function
stabilizes. Based on [7, Proposition 1], Fξ(θ, n) possesses
proper property with Lf -Lipschitz continuous gradient and
bounded from above. Consequently, during the iterative so-
lution process by using APG, Fξ(θ, n) will exhibit a mono-
tonically non-decreasing behavior and ultimately converge to
a approximate stationary point for P2. Besides, the complexity
order for performing the first-order APG algorithm for JAAPA
scheme is O(K2M) per iteration. In contrast, the second-order
cone (SOC) general solvers based on SCA have an iteration
complexity of O(

√
K +MK4M3) [3], [5], [6], [10].

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
JAAPA scheme in terms of EE. To confirm the feasibility of
the APG algorithm for the proposed scheme in large-scale
systems, we set M = 100,K = 40, τu = 40, τc = 200.
If not otherwise mentioned, the other parameters in our
system follow the same settings as in [7]. The initial values
of power allocation coefficients follows the maximal-ratio

principle [10], i.e. θ(0)mk =
√
Γ̃−1
N γmk(

∑K
k=1 γmk)−1,∀m, ∀k.

Additionally, the initial number of activated antennas for all
APs is simply set to max(⌊α⌋+ 1, 1).
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Fig. 1. Downlink EE versus the number of iteration index.

In Fig. 1, the proposed JAAPA scheme is applied to EE
optimization problem by algorithm 1 for CB, NCB, and ECB
precoding, respectively. The comparison benchmarks include
approaches that utilize only power allocation (PA) [3], [6], [7],
[10], as well as a joint optimization algorithm that employs the
bisection method (BM) for both power allocation and antenna
activation, namely PABM [11]. Obviously, the JAAPA scheme
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Fig. 3. Downlink EE versus channel inversion rate α.

can converge to PABM after a few iterations, achieving a
significant performance improvement of approximately 20%
compared to the approach that relies solely on PA2. Further-
more, as shown in Fig. 2, the proposed JAAPA (APG) can
reduce runtime by approximately 20 times compared to the
PABM, emerged as a pragmatic way for large-scale systems.

As seen in Fig. 3, the variations in EE under different
channel inversion rates (corresponding to various CB variants)
is compared. To provide an intuitive understanding of the
impact of antenna activation on green communication, the
number of activated antennas is varied uniformly. Based on
this comparison, we can draw the following two conclusions:

• The highest EE is always achieved within ECB precoding
among different CB variants. This is attributed to the
near-deterministic nature of the effective channel, result-
ing from the normalization by the squared norm of the
channel information [10].

• EE exhibits an almost linear degradation trend with
excessive growth in antenna activation. Consequently,
the proposed algorithm can identify n⋆, which holds
significant importance in practical applications.

Fig. 4 illustrates the impact of Ptc,m on the optimal number
of activated antennas n⋆. Without loss of generality, the PA

2Since the performance achieved by SCA and APG for power allocation is
equivalent [7], we only utilize APG for performance comparison in Fig. 1. In
Fig. 2, we further distinguish between the two optimization algorithms during
the complexity comparison.
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Fig. 4. Downlink EE versus the number of activated antennas under different
internal power Ptc,m (CB precoding).

(APG) scheme within CB precoding is adopted here [7].
Evidently, as Ptc,m increases, n⋆ steadily approaches the lower
bound of C2. Based on Theorem 1, we can conclude that if
Ptc,m ≥ 0.92,∀m, then n⋆ = max(⌊α⌋+1, 1) = 1, which is
consistent with Fig. 4. Additionally, note that when Ptc,m = 0,
EE is able to increase indefinitely with n. However, it is
evident that circuit operation incurs power consumption. Thus,
finding ways to reduce this consumption to provide substantial
improvements in EE is a viable direction for future research.
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